Publications

Schöpfer, M.P.J., Habermüller, M., Levi, N. and Decker, K. (2024): Rigid Body Spring Network models of drilling-induced tensile fractures.- In: Hazzard, Katsaga, Sanftenberg and Nelson (eds.): Applied Numerical Modeling in Geomechanics. Paper 07-01; Minneapolis. https://itasca-downloads.s3.amazonaws.com/documents/Itasca+symposia/2024/ExtendedAbstracts/07-01.pdf

Levi, N., Weissl, M. and Decker, K. (2024): Assessing the hazard of fault triggering by deep geothermal energy production in an active fault system via a 1D stress model and 3D fault mapping.- Int J Earth Sci (Geol Rundsch), 1-27; DOI: https://doi.org/10.1007/s00531-023-02383-6.

Diessl, J., Levi, N., Roters, B., Bruno, M., Nazari, F., Young, J., Lenneis, J. (2023): InStRikE: Induced Seismicity Risk Estimation in geothermal powerplants – Multi Parameter Influence Analysis.- Conf. Proc. 84th EAGE Annual Conference & Exhibition, Jun 2023, 2023:1-5; DOI: https://doi.org/10.3997/2214-4609.202310537.

Schöpfer, M., Habermüller, M., Levi, N. and Decker, K. (2023): Three-dimensional numerical modelling of drilling-induced tensile wall fractures.- Conf. Proc. 84th EAGE Annual Conference & Exhibition, Jun 2023, 2023:1-5; DOI: https://doi.org/10.3997/2214-4609.202310801.

Levi, N. (2023): Polyphase tectonics in the central Salzkammergut (Northern Calcareous Alps, Austria): An updated interpretation.- Jour. of Geodynamics, 156:101973; DOI: https://doi.org/10.1016/j.jog.2023.101973.

Roters, B., Diessl, J., Bruno, M.S., Levi, N., Young, J. and Nazari, F. (2022): Das InStRikE-Projekt: Risikobewertung von induzierter Seismizität für tiefe Geothermie – Vorstellung, Status und Ausblick.- GTÖ Symposium 2022, 9-11 November 2022, Vandans.

Levi, N., Diessl, J., Bruno, M., Nazari, F., Roters, B. and Young, J. (2022): Preliminary results of the InStRikE project: risk-assessment of induced seismicity in geothermal fields.- In: Rantitsch, G. & Raith, J.G. (Eds.): PANGEO Austria 2022 – Abstracts, 10–14 September 2022, Leoben. – Berichte der Geologischen Bundesanstalt, 143:100, Vienna.

Levi, N., Weissl, M. and Decker, K. (2022): Geodynamic remarks in the deep borehole TH1 (Vienna Basin) .- In: Rantitsch, G. & Raith, J.G. (Eds.): PANGEO Austria 2022 – Abstracts, 10–14 September 2022, Leoben. – Berichte der Geologischen Bundesanstalt, 143:101, Vienna. 

Habermüller, M., Levi, N. and Garrard, R. (2022): Integration of Drilling History and Borehole Images for Improved Well Completion.-  Conf. Proc. 83rd EAGE Annual Conference & Exhibition, Jun 2022, 2022:1-5; DOI: https://doi.org/10.3997/2214-4609.20221046

Levi, N., Pittarello, L. and Habermueller, M. (2022): Structural characteristics of the curved Königsee-Lammertal-Traunsee fault system in Salzkammergut (Northern Calcareous Alps, Austria). Jour. of Structural Geol., 155:104503; DOI: https://doi.org/10.1016/j.jsg.2021.104503

Pittarello, L., Levi, N., Wegner, W. and Stehlik, H. (2022): The pseudotachylytes at the base of the Silvretta Nappe: A newly discovered recent generation and the tectonomometamophic evolution of the Nappe. – Tectonophysics, 822:229185; DOI: https://doi.org/10.1016/j.tecto.2021.229185.

Levi, N. and Habermüller, M. (2021): Characterization of the Stress Field at the Alpine Thrust Front (Eastern Alps, Austria). – Fourth EAGE Borehole Geology Workshop, Sep 2021, 2021: 1-3; DOI: https://doi.org/10.3997/2214-4609.2021626012

Roters, B., Habermüller, M., Levi, N. and Garrard, R. (2021): Borehole Image Interpretations during ongoing operations – a workflow from a scientific drilling campaign in Switzerland. – Fourth EAGE Borehole Geology Workshop, Sep 2021, 2021:1-3. DOI: https://doi.org/10.3997/2214-4609.2021626011.

Levi N., Habermueller, M., Exner U., Wiesmayr G., & Decker K. (2021): Active out-of-sequence thrusting in the Molasse Basin constrained by a multidisciplinary approach (Eastern Alps, Austria). – Tectonophysics, 812:228911; DOI: https://doi.org/10.1016/j.tecto.2021.228911

Fernández, O., Habermüller, M., Grasemann, B. (2020): Hooked on salt: Rethinking Alpine tectonics in Hallstatt (Eastern Alps, Austria). – Geology, 49(3): 325–329. DOI: https://doi.org/10.1130/G47981.1.

Roters, B., Habermüller, M., Matthes, L., Miersemann, U., and Linzer, H.-G. (2019): The Application of Borehole Image Interpretations for Geothermal Well Stimulation. – AAPG 3rd Hydrocarbon – Geothermal Cross Over Technology Workshop, Geneva. DOI: 10.1306/42381Roters2019.

Levi, N., Habermueller, M, Exner, U., Piani, E., Wiesmayr, G. & Decker, K. (2019): The stress field in the frontal part of the Eastern Alps (Austria) from borehole image log data. Tectonophysics, 769: 228715; DOI: https://doi.org/10.1016/j.tecto.2019.228175.

Roters, B. and Gysi, M. (2018): Horizontal Stress Orientation and Fractures from Image Logs in Geothermal Boreholes in Fractured Carbonates in Switzerland. – First EAGE/IGA/DGMK Joint Workshop in Geothermal Energy, DGE P03, Strasbourg. DOI: 10.3997/2214-4609.201802946

Levi, N., Decker, K., Habermueller, M., Piani, E., Exner, U., Reingruber, A. and Troiss, W. (2018): Present Day Stress Field in the frontal part of the Eastern Alps (Austria) from Image Log Data. – Geophysical Research Abstracts, 20; EGU2018-12801.

Today, about 95% of man-made hydrogen comes from steam-reforming, a technology, which is efficient, but comes with a large carbon footprint.

To reach the global climate goals, two things, besides others, must happen: At first, different technologies to produce hydrogen need to be used. Secondly, more and more CO2 intensive industrial processes need to be converted to use hydrogen instead of fossil fuels. This means, in the decades to come, much more hydrogen will be needed, and it will be produced differently and at different places. If hydrogen is produced by electrolysis from renewable electricity sources like solar and wind, then this electricity sources are not steady and not necessarily available when hydrogen demand is high. So, hydrogen need to be produced in advance and stored to guarantee constant supply.

Hydrogen molecules, however, are smaller and more reactive compared to natural gas or oil. So, the technical and geological requirements for a hydrogen storage differ from hydrocarbon or CO2 storages. 

At NiMBUC Geoscience, we are involved in modelling of storages for hydrogen. We model the geomechanical conditions of the rocks to ensure, that hydrogen storages can be operated safely and economically. The results of such mathematical models allow our clients to test their chosen formations and to find the right spots for contructing well performing hydrogen storages.

This website uses cookies to ensure you get the best experience on our website. See our privacy policy here.